Universal Approximation of a Class of Interval Type-2 Fuzzy Neural Networks Illustrated with the Case of Non-linear Identification
نویسندگان
چکیده
Neural Networks (NN), Type-1 Fuzzy Logic Systems (T1FLS) and Interval Type-2 Fuzzy Logic Systems (IT2FLS) are universal approximators, they can approximate any non-linear function. Recent research shows that embedding T1FLS on an NN or embedding IT2FLS on an NN can be very effective for a wide number of non-linear complex systems, especially when handling imperfect information. In this paper we show that an Interval Type2 Fuzzy Neural Network (IT2FNN) is a universal approximator with some precision using a set of rules and Interval Type-2 membership functions (IT2MF) and the Stone-Weierstrass Theorem. Also, simulation results of non-linear function identification using the IT2FNN for one and three variables with 10-fold cross-validation are presented. Keywords— Interval Type-2 Fuzzy Logic Systems, Interval Type-2 Fuzzy Neural Networks, Neural Networks, Universal Approximation. o
منابع مشابه
Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملA Flexible Link Radar Control Based on Type-2 Fuzzy Systems
An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...
متن کاملUniversal Approximation of Interval-valued Fuzzy Systems Based on Interval-valued Implications
It is firstly proved that the multi-input-single-output (MISO) fuzzy systems based on interval-valued $R$- and $S$-implications can approximate any continuous function defined on a compact set to arbitrary accuracy. A formula to compute the lower upper bounds on the number of interval-valued fuzzy sets needed to achieve a pre-specified approximation accuracy for an arbitrary multivariate con...
متن کاملA New Type-2 Fuzzy Systems for Flexible-Joint Robot Arm Control
In this paper an adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented. The capability of the proposed method (we named ANFIS2) to function approximation and dynamical system identification is shown. The ANFIS2 structure ...
متن کاملAdaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy
This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...
متن کامل